Soit, pour \(t\in \R\text{,}\)
\begin{align*}
\va(t)&= t^2\,\vi + t^4\,\vj + t^6\,\vk, & & \vb(t)= e^{-t}\,\vi + e^{-3t}\,\vj + e^{-5t}\,\vk,\\
\g(t)&= t^2, & &s(t)= \sin t.
\end{align*}
Nous allons calculer plusieurs dérivées, utilisons donc un peu de couleur pour rendre les calculs plus lisibles. Lorsque nous ferons appel à la règle de différentiation du produit, à savoir
\begin{equation*}
\diff{}{t}\big[f(t)\,g(t)\big]
={\color{blue}{f'(t)}}\,g(t) + f(t)\,{\color{blue}{g'(t)}},
\end{equation*}
nous utiliserons la couleur bleue pour mettre en évidence les facteurs \(f'(t)\) et \(g'(t)\text{.}\)
\begin{align*}
\g(t)\,\vb(t) & = t^2e^{-t}\,\vi + t^2 e^{-3t}\,\vj + t^2 e^{-5t}\,\vk
\end{align*}
donne
\begin{align*}
\diff{}{t}\big[\g(t)\vb(t)\big]
&=\big[{\color{blue}{2t}} e^{-t}{\color{blue}{-}}t^2{\color{blue}{e^{-t}}}\big]\vi
+\big[{\color{blue}{2t}} e^{-3t}{\color{blue}{-3}}t^2{\color{blue}{e^{-3t}}}\big]\vj
+\big[{\color{blue}{2t}} e^{-5t}{\color{blue}{-5}}t^2{\color{blue}{e^{-5t}}}\big]\vk\\
&={\color{blue}{2t}}\big\{e^{-t}\,\vi + e^{-3t}\,\vj + e^{-5t}\,\vk\big\}
+ t^2{\color{blue}{\big\{-e^{-t}\,\vi -3 e^{-3t}\,\vj -5 e^{-5t}\,\vk\big\}}}\\
&={\color{blue}{\g'(t)}}\vb(t)+\g(t){\color{blue}{\vb'(t)}},
\end{align*}
et
\begin{align*}
\va(t)\cdot\vb(t) & = t^2e^{-t} + t^4 e^{-3t} + t^6 e^{-5t}
\end{align*}
donne
\begin{align*}
\diff{}{t}\big[\va(t)\cdot\vb(t)\big]
&=\big[{\color{blue}{2t}} e^{-t}{\color{blue}{-}}t^2{\color{blue}{e^{-t}}}\big]
+\big[{\color{blue}{4t^3}} e^{-3t}{\color{blue}{-3}}t^4{\color{blue}{e^{-3t}}}\big]
+\big[{\color{blue}{6t^5}} e^{-5t}{\color{blue}{-5}}t^6{\color{blue}{e^{-5t}}}\big]\\
&=\big[{\color{blue}{2t}} e^{-t}+{\color{blue}{4t^3}} e^{-3t}+{\color{blue}{6t^5}} e^{-5t}\big]
+\big[{\color{blue}{-}}t^2{\color{blue}{e^{-t}}}
{\color{blue}{-3}}t^4{\color{blue}{e^{-3t}}}
{\color{blue}{-5}}t^6{\color{blue}{e^{-5t}}}\big]\\
&={\color{blue}{\big\{2t\,\vi+4t^3\,\vj+6t^5\,\vk\big\}}}\cdot
\big\{e^{-t}\,\vi + e^{-3t}\,\vj + e^{-5t}\,\vk\big\}\\&\hskip0.5in
+\big\{t^2\,\vi + t^4\,\vj + t^6\,\vk\big\}\cdot
{\color{blue}{\big\{-e^{-t}\,\vi-3e^{-3t}\,\vj-5e^{-5t}\,\vk\big\}}}\\
&={\color{blue}{\va'(t)}}\cdot\vb(t)+\va(t)\cdot{\color{blue}{\vb'(t)}},
\end{align*}
et
\begin{align*}
\va(t)\times\vb(t)
&=\det\left[\begin{matrix}\vi& \vj &\vk\\
t^2 & t^4 & t^6\\
e^{-t} & e^{-3t} & e^{-5t}\end{matrix}\right]\\
&=\vi\big(t^4 e^{-5t}-t^6 e^{-3t})
-\vj(t^2 e^{-5t}- t^6 e^{-t})
+\vk(t^2 e^{-3t}-t^4 e^{-t})
\end{align*}
donne
\begin{align*}
&\diff{}{t}\big[\va(t)\times\vb(t)\big]\\
&=\ \vi\big(\ {\color{blue}{4t^3}} e^{-5t}\ \ -\ {\color{blue}{6t^5}} e^{-3t})
\ -\ \vj(\ {\color{blue}{2t}} e^{-5t}\ -\ {\color{blue}{6t^5}} e^{-t})
+\vk(\ {\color{blue}{2t}} e^{-3t}\ -\ {\color{blue}{4t^3}} e^{-t}) \\&\hskip0.1in
+\vi\big({\color{blue}{-5}}t^4 {\color{blue}{e^{-5t}}}{\color{blue}{+3}}t^6 {\color{blue}{e^{-3t}}})
-\vj({\color{blue}{-5}}t^2 {\color{blue}{e^{-5t}}}{\color{blue}{+}} t^6 {\color{blue}{e^{-t}}})
+\vk({\color{blue}{-3}}t^2 {\color{blue}{e^{-3t}}}{\color{blue}{+}}t^4 {\color{blue}{e^{-t}}})\\
&={\color{blue}{\big\{2t\,\vi+4t^3\,\vj+6t^5\,\vk\big\}}}\times
\big\{e^{-t}\,\vi + e^{-3t}\,\vj + e^{-5t}\,\vk\big\}\\&\hskip0.5in
+\big\{t^2\,\vi + t^4\,\vj + t^6\,\vk\big\}\times
{\color{blue}{\big\{-e^{-t}\,\vi-3e^{-3t}\,\vj-5e^{-5t}\,\vk\big\}}}\\
&={\color{blue}{\va'(t)}}\times\vb(t)+\va(t)\times{\color{blue}{\vb'(t)}}
\end{align*}
et
\begin{align*}
\va\big(s(t)\big)
&=(\sin t)^2\,\vi +(\sin t)^4\,\vj + (\sin t)^6\,\vk\\
\implies \diff{}{t}\big[\va\big(s(t)\big)\big]
&=2(\sin t)\cos t\,\vi +4(\sin t)^3\cos t\,\vj + 6(\sin t)^5\cos t\,\vk\\
&=\big\{2(\sin t)\,\vi +4(\sin t)^3\vj + 6(\sin t)^5\vk\big\}\cos t\\
&=\va'\big(s(t)\big)\,s'(t).
\end{align*}