Consider
\begin{equation*}
L = \begin{bmatrix} \mybxsm{1} \amp 2 \amp 0 \amp 0 \amp 3 \\ 0 \amp 0 \amp \mybxsm{1} \amp 0 \amp 4 \\ 0 \amp 0 \amp 0 \amp \mybxsm{1} \amp 5 \end{bmatrix}\text{.}
\end{equation*}
This matrix is in reduced row echelon form, the pivots are marked. There are two non-pivot columns, so the kernel has dimension 2, that is, it is the span of 2 vectors. Let us find the first vector. We look at the first non-pivot column, the \(2^{\text{ nd } }\) column, and we put a \(-1\) in the \(2^{\text{ nd } }\) entry of our vector. We put a \(0\) in the \(5^{\text{ th } }\) entry as the \(5^{\text{ th } }\) column is also a non-pivot column:
\begin{equation*}
\begin{bmatrix} ? \\ -1 \\ ? \\ ? \\ 0 \end{bmatrix}\text{.}
\end{equation*}
Let us fill the rest. When this vector hits the first row, we get a \(-2\) and \(1\) times whatever the first question mark is. So make the first question mark \(2\text{.}\) For the second and third rows, it is sufficient to make it the question marks zero. We are really filling in the non-pivot column into the remaining entries. Let us check while marking which numbers went where:
\begin{equation*}
\begin{bmatrix} 1 \amp \mybxsm{2} \amp 0 \amp 0 \amp 3 \\ 0 \amp \mybxsm{0} \amp 1 \amp 0 \amp 4 \\ 0 \amp \mybxsm{0} \amp 0 \amp 1 \amp 5 \end{bmatrix} \begin{bmatrix} \mybxsm{2} \\ -1 \\ \mybxsm{0} \\ \mybxsm{0} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\text{.}
\end{equation*}
Yay! How about the second vector. We start with
\begin{equation*}
\begin{bmatrix} ? \\ 0 \\ ? \\ ? \\ -1 . \end{bmatrix}
\end{equation*}
We set the first question mark to 3, the second to 4, and the third to 5. Let us check, marking things as previously,
\begin{equation*}
\begin{bmatrix} 1 \amp 2 \amp 0 \amp 0 \amp \mybxsm{3} \\ 0 \amp 0 \amp 1 \amp 0 \amp \mybxsm{4} \\ 0 \amp 0 \amp 0 \amp 1 \amp \mybxsm{5} \end{bmatrix} \begin{bmatrix} \mybxsm{3} \\ 0 \\ \mybxsm{4} \\ \mybxsm{5} \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\text{.}
\end{equation*}
There are two non-pivot columns, so we only need two vectors. We have found the basis of the kernel. So,
\begin{equation*}
\text{ kernel of \(L\) } = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} , \begin{bmatrix} 3 \\ 0 \\ 4 \\ 5 \\ -1 \end{bmatrix} \right\}
\end{equation*}